metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mouhamadou S. Boye,^a Aminata Diassé-Sarr,^a* Kieran C. Molloy,^b Gabriele Kociok-Köhn^b and Bernard Mahieu^c

^aDépartement de Chimie, Faculté des Sciences et Techniques, Université cheikh Anta Diop, Dakar, Senegal, ^bDépartment of Chemistry, University of Bath, Bath BA2 7AY, England, and ^cDépartement de Chimie, CSTR, Place Louis Pasteur B-1348, Louvain-la-Neuve, Belgium

Correspondence e-mail: diasseam@yahoo.fr

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.006 Å R factor = 0.031 wR factor = 0.062 Data-to-parameter ratio = 29.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[bis(trimethyltin)-µ-glutarato]

The structure of $[SnMe_3O_2C(CH_2)_3CO_2SnMe_3]_n$ or $\{[Sn_2-(CH_3)_6(C_5H_6O_4)]\}_n$ consists of an infinite layer containing pentacoordinate Sn atoms. There are two formula units, A and B, in the asymmetric unit. Glutarate acts as a tetradentate bridging ligand, each glutarate being linked to four different Sn atoms, generating two-dimensional sheets. One ligand links the Sn atoms of unit A, the other the Sn atoms of unit B. The sheets are parallel to each other.

Comment

Crystal structures of $[SnR_3]_2[O_2C(CH_2)CO_2]$ (R = Me and Ph) and $[SnPh_3]_2[O_2C(CH_2)_3CO_2]$ have been reported (Yin *et al.*, 2002; Cissé *et al.*, 2003). In addition to their interest as novel organotin species, bactericidal and fungicidal activity of triorganotin compounds are quite well known (Dutrecq *et al.*, 1992; Moens *et al.*, 1992). Such species are also screened for their antitumour activity and several of them are found to be active *in vitro* (Gielen, 2003, 2005). As a continuation of our interest in triaryltin derivatives (Diassé-Sarr *et al.*, 1997, 2004; Diop *et al.*, 2002), the X-ray crystallographic analysis of the title compound, (I) (Fig. 1), has been carried out and the results are presented here.

Each Sn atom is five-coordinate and adopts trigonalbipyramidal *trans*-O₂SnC₃ geometry. There are two formula units in the asymmetric unit. The O-Sn-O bond angles are in the range 171.32 (10)–173.34 (10)° and are close to the ideal value, while C-Sn-C angles within the equatorial plane of the Sn atoms cover the range 117.35 (17)–123.25 (18)° and confirm the near-planarity of the SnC₃ groups revealed by the IR data. Each Sn atom has short [Sn1-O1 = 2.214 (3) Å] and long [Sn1-O2ⁱ = 2.346 (3) Å; symmetry code as in Table 1] Received 23 March 2007 Accepted 15 May 2007

© 2007 International Union of Crystallography All rights reserved

Unit A

Figure 1

The structures of the two formula units in the asymmetric unit of (I), with ellipsoids drawn at the 50% probability level. H atoms have been omitted.

Sn–O bond lengths, which correspond to two C–O bond lengths. The longer C–O bond [C4-O1= 1.276 (5) Å] corresponds to the stronger Sn–O bond and the shorter C–O bond [C4-O2 = 1.244 (5) Å] to the longer (weaker) Sn–O bond (Table 1). In (I), the Sn–O bonds are slightly longer than those reported for the triphenyltin analogue (Yin *et al.*, 2002). The glutarate acts as a tetradentate bridging ligand, each glutarate being linked to four different Sn atoms, generating two-dimensional sheets. A first ligand links Sn1 and Sn2, another one Sn3 and Sn4. The sheets are parallel to each other (Fig. 2). The network incorporates 24-atom rectangular rings with approximate dimensions 9.9 × 6.7 Å measured between Sn atoms on opposite edges of the rectangle.

Experimental

Me₄NOH (10%), HCO₂(CH₂)₃CO₂H and SnMe₃Cl were obtained from Aldrich and were used without further purification. An ethanol solution (20 ml) containing $[Me_4N]_2[CO_2(CH_2)_3CO_2] \cdot 5H_2O$ (0.37 g, 1 mmol) [obtained from a solution of Me₄NOH (20% in water) and HCO₂(CH₂)₃CO₂H in 1:2 ratio] and SnMe₃Cl (0.20 g, 1 mmol) was stirred at room temperature for more than 2 h to give a solution from which colourless crystals were formed after slow solvent evaporation (yield 80%; m.p. 391 K).

Crystal data

$[Sn_2(CH_3)_6(C_5H_6O_4)]$
$M_r = 457.68$
Orthorhombic, $P2_12_12_1$
a = 10.0053 (1) Å
b = 13.1391 (2) Å
c = 25.9006 (5) Å

 $V = 3404.83 (9) Å^{3}$ Z = 8 Mo K\alpha radiation $\mu = 2.94 \text{ mm}^{-1}$ T = 150 (2) K 0.25 \times 0.25 \times 0.15 mm

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\rm min} = 0.502, T_{\rm max} = 0.641$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.062$ S = 1.049389 reflections 320 parameters H-atom parameters constrained 42835 measured reflections 9389 independent reflections 8432 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$

 $\begin{array}{l} \Delta \rho_{max} = 0.72 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -1.11 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 3866 \ \mbox{Friedel pairs} \\ \mbox{Flack parameter: } 0.50 \ (2) \end{array}$

Table 1 Selected geometric parameters (Å, °).

e	1	, ,	
Sn1-O1	2.214 (3)	O2-C4	1.244 (5)
Sn1-O2 ⁱ	2.346 (3)	O3-C8	1.270 (5)
Sn2-O3	2.201 (3)	O4-C8	1.258 (5)
Sn2–O4 ⁱⁱ	2.333 (3)	O5-C15	1.276 (5)
Sn3-O5	2.197 (3)	O6-C15	1.243 (5)
Sn3–O8 ⁱⁱⁱ	2.343 (3)	O7-C19	1.268 (5)
Sn4-O7	2.211 (3)	O8-C19	1.255 (5)
D1-C4	1.276 (5)		
C1-Sn1-C2	117.35 (17)	C10-Sn2-O3	94.60 (14)
C1-Sn1-C3	119.91 (18)	C10-Sn2-O4 ⁱⁱ	88.79 (14)
C3-Sn1-C2	122.34 (18)	C11-Sn2-O3	95.74 (15)
C10-Sn2-C9	118.3 (2)	C11-Sn2-O4 ⁱⁱ	88.60 (14)
C11-Sn2-C10	122.02 (19)	C12-Sn3-O5	88.33 (14)
C11-Sn2-C9	119.1 (2)	C12-Sn3-O8 ⁱⁱⁱ	85.05 (14)
C13-Sn3-C12	119.36 (19)	C13-Sn3-O5	94.11 (14)
C14-Sn3-C13	123.19 (18)	C13-Sn3-O8 ⁱⁱⁱ	88.54 (14)
C14-Sn3-C12	117.01 (19)	C14-Sn3-O5	93.89 (14)
C20-Sn4-C21	123.25 (18)	C14-Sn3-O8 ⁱⁱⁱ	89.75 (14)
C22-Sn4-C20	118.79 (19)	$C20-Sn4-O6^{iv}$	87.64 (14)
C22-Sn4-C21	117.4 (2)	C21-Sn4-O6 ^{iv}	89.90 (14)
C1-Sn1-O1	86.64 (13)	C20-Sn4-O7	95.28 (14)
$C1-Sn1-O2^{i}$	85.01 (13)	C21-Sn4-O7	94.41 (14)
C2-Sn1-O1	95.15 (14)	C22-Sn4-O6 ^{iv}	84.66 (14)
$C2-Sn1-O2^{i}$	90.80 (14)	C22-Sn4-O7	87.70 (14)
C3-Sn1-O1	94.33 (14)	$O1-Sn1-O2^{i}$	171.32 (10)
$C3-Sn1-O2^{i}$	87.79 (15)	O3-Sn2-O4 ⁱⁱ	171.96 (10)
C9-Sn2-O3	87.29 (15)	$O5-Sn3-O8^{iii}$	173.34 (10)
C9-Sn2-O4 ⁱⁱ	84.68 (15)	O7–Sn4–O6 ^{iv}	172.31 (10)
	(1) . 1 . 3		. 1

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (iii) $-x - 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

The structure was refined as an inversion twin, with components in the ratio 1:1. All H atoms were geometrically located in ideal positions and refined using a riding model, with C-H = 0.98 Å for methyl H atoms and C-H = 0.99 Å for methylene H atoms, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms. The deepest hole in the final difference map is 0.78 Å from Sn4.

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1998); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

MSB and ADS thank Professor Libasse Diop for equipment support.

Figure 2

(a) A view along the *a* axis of the structure of (I), showing the two units. (b) A view along the *b* axis of unit A, showing the two-dimensional sheet incorporating Sn1 and Sn2. (c) A view along the *b* axis of unit B, showing the two-dimensional sheet incorporating Sn3 and Sn4. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $x - \frac{1}{2}, \frac{3}{2} - y, 2 - z$; (iv) $x - \frac{1}{2}, 1/2 - y, 2 - z$; (v)- $x, 1/2 + y, \frac{3}{2} - z$; (vi)- $x, y - \frac{1}{2}, \frac{3}{2} - z$.]

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Cissé, I., Guèye, O., Mahieu, B. & Tinant, B. (2003). Appl. Organomet. Chem. 17, 821–822.
- Diassé-Sarr, A., Barry, A. H., Jouini, T., Diop, L., Mahieu, B., Mahon, M. F. & Molloy, K. C. (2004). J. Organomet. Chem. 689, 2087–2091.
- Diassé-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). *Main Group Met. Chem.* 20, 223–229.
- Diop, C. A. K., Bassène, S., Sidibé, M., Diassé-Sarr, A., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). *Main Group Met. Chem.* 25, 683–689.

Dutrecq, A., Willem, R., Biesemans, M., Boualam, M., Meriem, A. & Gielen, M. (1992). Main Group Met. Chem. 15, 285–291.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gielen, M. (2003). J. Braz. Chem. Soc. 14, 870-877.
- Gielen, M. (2005). Appl. Organomet. Chem. 19, 440-450.
- Moens, L., Maraite, H., Mahieu, B., El Khloufi, A., Willem, R. & Gielen, M. (1992). Main Group Met. Chem. 15, 275–291.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1998). SHELXL97. University of Göttingen, Germany.
- Yin, H.-D., Wang, C.-H., Ma, C.-L. & Fang, H.-X. (2002). *Chin. J. Org. Chem.* **22**, 489–495.